Q. \(\frac{a}{b+c} + \frac{b}{c+a}+\frac{c}{a+b}=1 \)
হলে , প্রমাণ কারো যে
\(\frac{a^2}{b+c} + \frac{b^2}{c+a}+\frac{c^2}{a+b}=0 \)
সমাধান:
\( \frac{a}{b+c} + \frac{b}{c+a}+\frac{c}{a+b}=1 \)
[উভয়দিকে a+b+c দিয়ে গুণ করে পাই]
or, \(\frac{a(a+b+c)}{b+c} + \frac{b(a+b+c)}{c+a}+\frac{c(a+b+c)}{a+b}=1(a+b+c)\)
or, \(\frac{a^2}{b+c}+\frac{a(b+c)}{b+c}+ \frac{b^2}{c+a}+\frac{b(c+a)}{c+a}+ \frac{c^2}{a+b}+\frac{c(a+b)}{a+b}=a+b+c \)
or, \(\frac{a^2}{b+c}+a+ \frac{b^2}{c+a}+b+ \frac{c^2}{a+b}+c=a+b+c \)
or, \(\frac{a^2}{b+c} +\frac{b^2}{c+a}+ \frac{c^2}{a+b}=a+b+c-a-b-c \)
or, \(\frac{a^2}{b+c} +\frac{b^2}{c+a}+ \frac{c^2}{a+b}=0 \) [proved]
Posts